AUC optimization and the two-sample problem
نویسندگان
چکیده
The purpose of the paper is to explore the connection between multivariate homogeneity tests and AUC optimization. The latter problem has recently received much attention in the statistical learning literature. From the elementary observation that, in the two-sample problem setup, the null assumption corresponds to the situation where the area under the optimal ROC curve is equal to 1/2, we propose a two-stage testing method based on data splitting. A nearly optimal scoring function in the AUC sense is first learnt from one of the two half-samples. Data from the remaining half-sample are then projected onto the real line and eventually ranked according to the scoring function computed at the first stage. The last step amounts to performing a standard Mann-Whitney Wilcoxon test in the onedimensional framework. We show that the learning step of the procedure does not affect the consistency of the test as well as its properties in terms of power, provided the ranking produced is accurate enough in the AUC sense. The results of a numerical experiment are eventually displayed in order to show the efficiency of the method.
منابع مشابه
Extracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...
متن کاملA Structural SVM Based Approach for Optimizing Partial AUC
The area under the ROC curve (AUC) is a widely used performance measure in machine learning. Increasingly, however, in several applications, ranging from ranking and biometric screening to medical diagnosis, performance is measured not in terms of the full area under the ROC curve, but instead, in terms of the partial area under the ROC curve between two specified false positive rates. In this ...
متن کاملApplications of two new algorithms of cuckoo optimization (CO) and forest optimization (FO) for solving single row facility layout problem (SRFLP)
Nowadays, due to inherent complexity of real optimization problems, it has always been a challenging issue to develop a solution algorithm to these problems. Single row facility layout problem (SRFLP) is a NP-hard problem of arranging a number of rectangular facilities with varying length on one side of a straight line with aim of minimizing the weighted sum of the distance between all facility...
متن کاملApproximate Reduction from AUC Maximization to 1-Norm Soft Margin Optimization
Finding linear classifiers that maximize AUC scores is important in ranking research. This is naturally formulated as a 1-norm hard/soft margin optimization problem over pn pairs of p positive and n negative instances. However, directly solving the optimization problems is impractical since the problem size (pn) is quadratically larger than the given sample size (p + n). In this paper, we give ...
متن کاملSupport Vector Algorithms for Optimizing the Partial Area under the ROC Curve
The area under the ROC curve (AUC) is a widely used performance measure in machine learning. Increasingly, however, in several applications, ranging from ranking to biometric screening to medicine, performance is measured not in terms of the full area under the ROC curve but in terms of the partial area under the ROC curve between two false-positive rates. In this letter, we develop support vec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009